

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Implementing Fully Homomorphic Encryption with

BFV Scheme in Internet of Things Network

Gede Satya Adi Dharma, 13217016

Program Studi Sistem dan Teknologi Informasi/Informatika/Teknik Elektro

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): satyaadidharma2000@gmail.com

and almost all devices must be physically held and controlled

in order to use it. However, that would be a problem if the

devices's position is out of range. This problem can be solved by

controlling the devices using the internet network so the device

can be controlled by simply pressing a button provided or doing

a similar little action. A devices that can connect to the internet

network are called IoT device. In sending and receiving data by

an IoT device, the security must be guaranteed so the data can be

maintained and not used by irresponsible people. This

experiment will show about implementing Fully Homomorphic

Encryption on an IoT device.

Keywords—IoT, Security, Internet, Encryption

I. INTRODUCTION

IoT devices are pieces of hardware that can transmit data
over the internet or other networks. By using internet networks
and storage data provider, such as cloud, the data are
accessible. All this data on IoT device must be safe and the
transmission process must be fast so that the users of IoT
device are comfortable in using it.

The reason why data transmission must be fast and safe is
because from 2005 to 2019, the internet users have increased
by 10% [1]. This growth is closely related to traffic from
internet networks in this world as the traffic is also
experiencing growth per year. In addition, the potential for
growth is also increasing.

Fig. 1. The increases of internet users every year [1]

As more users look to operate faster while improving the
data security, a solution is needed which can secure data but

still have a good performance. Encryption, when used properly,
can provide an additional security above basic protection data.
In encryption algorithms, a key will be used to perform an
encryption and also decryption. However, when the encryption
algorithm is used to process the data in the form of numeric,
the process requires a decryption before the data can be
processed.

In this paper, a fully homomorphic encryption (FHE)
scheme is used, where this scheme can process data in the form
of numeric without having to do the decryption first. The data
transactions on IoT device use a socket on the gateway. The
time limit of the encryption and decryption process will be seen
with data length of 2n with various n.

This paper is structured of several chapters. Chapter I
discusses the introduction of this experiment, chapter II
contains various kinds of knowledge related to this experiment
in the form of a literature, chapter III contains a design that
proposed for this experiment, chapter IV is the result of the
experiment, and chapter V is the conclusion of this experiment.

II. PREMILINARIES

This section will discuss some knowledge related to an IoT

device and a method for securing existing data in the cloud as

well as fully homomorphic encryption scheme.

A. IoT (Internet of Things)

IoT is a concept to expand the benefits of internet

connectivity that is connected continuously [2]. Basically, IoT

refers to an object that can be uniquely identified as a virtual

representation in an internet-based structure. An IoT device

will have a certain scheme of how a device can send and

receive data. The schematic of an IoT device in sending and

receiving data is shown in Figure 2.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Fig. 2. IoT device scheme

From Figure 2, it can be seen that the data that sent by an

IoT device will go through a gateway first before sending it to

the cloud, as well as when an IoT device wants to receive data.

The role of the gateway here is as a data bridge between

the cloud and IoT device. Before IoT device receives a data,

gateway will process the data according to the request, such as

filter data, delete data, and add additional data. A gateway is

needed to carry out this process because an IoT device cannot

perform complex processes but only carry out normal

processes.

In order for secure the data, the data must be encrypted

before sending it to the cloud so that when a person want to

take or use the data to commit a crime then that person will

only get encrypted data that won’t be able to understand.

B. Data Communication on Cloud

Data communication in internet network requires a certain

protocol so that data communication can take place. One of

the most frequently used is the Hyper Text Transfer Protocol

(HTTP) [3]. HTTP has been used for the basis of data

communication on the world wide web (WWW) so that it can

also used in a cloud.

HTTP has several delivery methods in communicating

data, namely OPTIONS, GET, HEAD, POST, PUT, TRACE,

DELETE, and CONECT. In every HTTP message, it consists

a request from the client to the server and then the client will

get a response from the server.

In order for guarantee its security, the data must be in an

encrypted state before doing the sending process so that the

data communication on the cloud remains safe. The schematic

of data communication in the cloud is shown in fig. 3.

Fig. 3. Schematic illustration of the HTTP protocol [4]

 HTTP has several delivery methods in

communicating data, namely OPTIONS, GET, HEAD, POST,

PUT, TRACE, DELETE, and CONECT. In every HTTP

message, it consists a request from the client to the server and

then the client will get a response from the server.

Figure 3 describes a client that sends a request to the server

using the Application Interface Protocol (API). The request

contains a delivery method, header, and message. The request

that has been given by the client to the server will be

processed by the server. The server will send a response

containing the status, header, and message depending on the

result process of the request from the client. The status from

the response sent by the server used to tell the client how the

request was given. This status is closely related to the success

or failure of the request sent by the client to the server. This

response can later be used by clients for various things. For

example, in case of IoT devices, an IoT device can show this

data to users.

C. Message Queuing Telemetry Transport (MQTT)

MQTT is a lightweight network protocol that commonly

used to send messages between one device and another. The

protocol used in MQTT is usually over TCP / IP, but all

network protocols that can be used for two-way connections

can also use MQTT [5].

In data communication, MQTT protocol requires two types

of network entities, namely a broker and the number of clients.

MQTT broker is a software that runs on a computer or cloud

which acts like a post office. MQTT doesn’t use the address of

the recipient, but use a subject which is commonly referred as

"Topic” so any client who wants to receive a messages must

subscribe the topic. By this method, a broker can send a

message to several clients at once.

Fig. 4. MQTT Broker

MQTT is the best choice for network protocols in IoT

devices because MQTT is lightweight network protocol that

do not use too many methods as an IoT device usually do not

use many methods as methods in HTTP.

D. Gateway

Gateway is part of networking which can be in form of

hardware or software that can connect data between one

device and another. This gateway is different from router

because it uses various protocols to connect many networks

[6].

In an IoT device, gateway is useful not only as a bridge in

data transactions. The uses of the Gateway in the IoT device

are as follows:

• Facilitating with devices that are not connected to the

internet.

• Data caching, queuing, and filtering.

• Additional security, because it can control user access

and manage network security.

• Configure the device.

• To diagnose a system

Apart from all the things mentioned above, a gateway can

perform complex processes of the data. Therefore, without a

gateway, an IoT device will be difficult to communicate with

cloud and won’t be able to perform complex data processing.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

E. Homomorphic Encryption

Gentry first introduced an encryption algorithm, namely

homomorphic encryption, in 2009 [7]. Homomorphic

encryption is an asymmetric encryption technique where the

algorithm consists of three main algorithms, that is key

generation, encryption, and decryption.

Homomorphic encryption has its own strength when

compared to other encryption algorithms, as it can perform

operations on data without having a decryption process first.

When the data that has been processed by homomorphic

encryption is decrypted, the result is the same as the

processing result of another encryption that requires a

decryption proccess.

The scheme can be illustrated as follows, for example there

is an encrypted message E(m), where m is an original

message, and a certain operation is performed, namely a

function f, the encrypted message becomes Enc(f(m)). When

the encrypted message is decrypted, the result of the message

will be f(m) so Enc(f(m)) = f (Enc(m)).

m

f(m) Enc(f(m))

Enc(m)

f f

Encrypt

Decrypt

Encrypt

Decrypt
CloudClient

Fig. 5. Homomorphic Encryption Scheme [4]

Figure 5 shows that all encryption and decryption

processes are carried out on the client, while the cloud only

accepts encrypted data and send data in encrypted forms. It

works like that so that if a person who is not responsible finds

a security gap in cloud and gets the data, they won’t be able to

do anything with the data because that person will only get an

encrypted data.

Fan and Vercautreren created homomorphic encryption

algorithm based on a scheme that called Learning with Error

(LWE) with a ring-LWE (RLWE) variant. The LWE operates

using an integer, while RLWE operates using a polynomial

ring [8]. The LWE scheme is shown in fig. 3.

Fig. 6. LWE Scheme

Fig. 6 shows that to make a public key for encryption

process, an operation is performed first. The operation

performed by multiplying the random number with a secret

key and then adding it with a random error to get a public key.

Before LWE, key generation only used a random number

which was basically difficult to crack. However, as time goes

by and technology develops, random numbers can be solved

by computers using the brute force network method. The LWE

scheme uses an error value in key generation so that if one key

and random numbers are to be known, it will be still difficult

to find the other key because of an error stored in the key

creation process. In addition, the error value is used in the

encryption process so that the results of the encrypted data

will be more difficult to solve even by a computer.

Homomorphic encryption has the potential to be applied in

an IoT device because it can process data in an encrypted state

so that the data will be processed faster without any

decryption process and also add a additional layer of security.

Moreover, homomorphic encryption is very suitable for this

application because it can handle data traffic congestion on an

internet network as an IoT device requires a real time

connection where the processing must be done quickly.

F. Securing Cloud Using Homomorphic Encryption

Almost all cloud services that exist today requires high

performance to transmit data. However, the cloud service is

not only require high performance, but also require a high

level of security. As internet users, choosing a right cloud

service that have two requirements above is a must so that the

data can be secure and processed quickly.

There are two threats in maintaining data security in the

cloud, namely data that is in cloud and when the data is being

transmitted from/to the cloud. The best way to secure both

threats is to use an encryption technique and a data

communication that meets the standards. Data in the cloud can

be secured first by using encryption before being sent to the

cloud as mention in [7] and [8]. Meanwhile, the data that is

being transmitted can be secured by using a data

communication that meets the standards as mention in [9] and

[10].

The homomorphic encryption that used in this experiment

have the following functions:

• ParamGen, for specifies the security parameters used for

encryption

• PubKeyGen, for generate public key

• SecKeyGen, for generate secret key

• Encrypt, to encrypt the original data or plaintext

• PolyAdd, to perform addition operations on encrypted

data or chipertext

• PolyMul, to perform multiplication operations on

encrypted data or chipertext

• Decrypt, to decrypt the encrypted data or ciphertext

Homomorphic encryption is a suitable choice for securing

a cloud while still paying attention to the performance of the

cloud in transmitting the data.

G. Network Socket

A network socket is a software structure connected to a

computer network that can serve as an endpoint for sending

and receiving data over the network. Socket structure together

with its property are using Application Programming Interface

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

(API) in its network architecture [11]. Due to the

standardization of the TCP / IP protocol in the development

process of the Internet, usually the provisions that exist on

sockets depends on the existing protocols on the Internet.

Sockets are usually used when create applications or create

programs that requires a real-time data. Socket always connect

to the client where the client sends data and also send the data

to the another clients. The socket scheme is shown in fig. 7.

Fig. 7. Skema Socket

III. FULLY HOMOMORPHIC ENCRYPTION FOR IOT DEVICE

This section will proposed a design for IoT devices that

will be integrated into a system that able to perform data

retrieval, processing and, sending data between one hardware

device to another. The design requires system gateway

architecture, IoT network infrastructure, and IoT device

design.

To check the readiness of the system that can work with

many devices at once, a gateway with nice performance is

needed to become an MQTT broker for the IoT system. The

performance of IoT devices can be tested by hardware

virtualization using internet bot which will do what the

hardware would do to test the performance.

Fig. 8. System Infrastructure

Fig. 8 shows the IoT infrastructure system that we build.

There are four entities that exist in this system infrastructure:

• IoT Device, implemented using the ESP8266 Wemos

which will do a publish to the broker

• Gateway Broker, implemented using Raspberry Pi 3B+

• Monitoring, frontend interface that can view incoming

data to a broker gateway

• Cloud, it can publish and subscribe to the broker with

MQTT

A. Gateway Infrastructure Design

Broker is used to regulate the flow of data from the device

to other components in the IoT system. For the

implementation, the choice fell into MochaJs. The sensors and

devices will send data to the topic of broker, and queued for

encryption. If the data queue exceeds the capacity, it will be

saved in the logging section and a warning will appear to the

users.

Fig. 9. Gateway Infrastructure

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Queue data is stored in Redist. The reason for choosing

redist is because redist allows to store data in volatile storage

such as RAM, so that if there are things that are not desired,

such as a system down, the data will be erased so that it is safe

from irresponsible people.

After the data is encrypted, it will be stored to the broker.

The topic has been subscriber by various components, such as

databases and interfaces, so that the data will be forwarded to

the database and user interface.

B. IoT Network Infratructure

The IoT network infrastructure is divided into two main

parts, namely the getter data event and setter data event. The

Getter data event used to get encrypted monitoring data at the

gateway. Meanwhile, setter data event used to adjust the

configuration of the monitoring tool, such as whether the tool

is active or not.

Fig. 10. Getter Data Event

The getter data event process start in a monitoring tool.

Monitoring tool will send a raw, unencrypted data to the

gateway. The gateway will encrypt the data and forward the

data to the cloud for storage and further processing. Another

gateway function is to send encrypted raw data to the

monitoring interface. Data processing in the cloud including

get average, minimum, and maximum data from sensors. The

data that has been processed in the cloud will be displayed on

the interface along with the raw data from the gateway.

Fig. 11. Setter Data Event

The setter data event start in a user. User will changes the
state of the device through the user interface. After the changes
are processed by the cloud, the changes will be sent to the
gateway and the gateway will forward it to the device. After
the device received it, the state of the tool will change
according to the user's wishes.

C. IoT Devices Design

The IoT device consists of a Wemos D1 Mini, Oled
Display and MAX30102 Sensor which can read heart rate. IoT
scheme is designed to ensure that each cable is connected
properly and has the ability to communicate using the MQTT
protocol.

Fig. 12. IoT Device Schematics

The results of this scheme are tested using a breadboard and
have proven to be running well. After receive a good results, a
PCB is designed to implement the IoT device. PCB sized in 4.2
x 6.4 cm. After that, the soldering and testing stage are carried
out to see if the system is still running well.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Fig. 13. PCB Design

IV. EXPERIMENTAL RESULTS

We will see the implementation of the hardware that we

designed where the hardware can detect the heart rate value

and displayed it on the OLED Display. The hardware can also

detect oxygen levels and patient temperature and the data will

be sent directly to the gateway. We will look at the

performance of the systems we design and build.

After that we also do benchmarking on the gateway that

we have built. The stress test will be carried out on the

designed gateway. The test will see how suitable the IoT

device can be combined into IoT environment. It appears in

the form of how may IoT devices that need to publish data

every few second can be connected to the gateway.

The stress test is useful for seeing the performance of the

gateway we choose and seeing the server capabilities with the

specifications we have determined, whether it has the ability

to become a gateway node for a large IoT infrastructure or not.

A. Hardware Implementations

We have tested the IoT device that we designed before. The
result of the hardware implementation is that the device can
display heart rate on OLED Display, the data is sent every 10
seconds to the gateway for encryption and the encrypted data is
forwarded to the cloud. The Wemos D1 Mini microcontroller
sends its data via wifi to the gateway using the MQTT protocol
to get better efficiency. The performance results shows that
MAX30102 sensor takes about 10 seconds to get the
appropriate value.

Fig. 14. Implementations

B. Keygen Event

We use virtualization to see how the system performs
computation of key generation algorithm. We use 1000 virtual
devices that will send a request to generate a key with
polynomial degrees 4, 8, 16, 32, and 64. The request will be
send every t ms/data.

1) Keygen Hitting
From the data shown below, the keygen request with

polynomial degrees of 4 has the ability to handle data requests
up to 12.5 ms for each data, and the threshold value will get
worse as the polynomial degree value is increasing. When the
polynomial degree is 64, it can only handle 1000 requests in 50
ms per hit.

Fig. 15. Keygen Hitting Performance

2) Time Execution in Gateway
From the threshold that was previously obtained, we also

have to see the time execution of gateway (Raspberry PI 3B+)
as we do 1000 computation request. From the graph shown
below, when we use small polynomial degrees, execution at the
gateway is not too heavy and does not require a long queue, but
when the polynomial degree increases, the process will stop
and it will take a long time to do this computation process.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Fig. 16. Time Execution in Gateway

3) Scoring Performance
We will see the scoring that will be done by the gateway.

The gateway should be able to process requests so that there is
no queue system and all requests work properly. From Fig.17,
it can be seen that when a score is below 1, no data is queued at
the gateway before sending it to the cloud. When we use the
smaller polynomial degree values, we also find that the ability
to process a request from 1000 data every second is faster and
more secure than when we using a larger polynomial.

Fig. 17. Scoring Performance

C. Data Encryption

We also use virtualization to see how the system performs
computation of encryption algorithm. We use 1000 virtual

devices that will send a request to encrypt the data with
polynomial degrees 4, 16, 64, and 256.

1) Encrypt Hitting
From the data shown below, the encryption request with

polynomial degrees of 4 has the ability to handle 1000 requests
in 6.25 ms, and the threshold value will get worse as the
polynomial degree value is increasing as it can only handle
1000 requests in 500 ms per hit.

Fig. 18. Ecnryption Hitting Performance

2) Time Execution in Gateway
From the threshold that was previously obtained, we also

have to see the time execution of gateway (Raspberry PI 3B+)
as we do 1000 computation request. From the graph shown
below, It can be seen that the higher of polynomial degree used
greatly affects the ability of the gateway to perform
computations. When we use the polynomial degree 64, there is
also an increase in the execution time which makes the
gateway throttling.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Fig. 19. Time Execution in Gateway

3) Scoring Performance
 We will see the scoring that will be done by the gateway.
The gateway should be able to process requests so that there is
no queue system and all requests work properly. From the
graph shown below, it can be seen that if we use polynomial
degree 256, the gateway is only capable of reaching 50 ms per
request, same as the previous experiment. But if we use the
smaller polynomials degree, the gateway is able to compute up
to 12.5 ms per 1000 request.

Fig. 20. Scoring Encryption

D. Data Decryption

Same as previous experiment, we use virtualization to see
how the system performs computation of decryption algorithm.
We use 1000 virtual devices that will send a request to encrypt

the data using MQTT with polynomial degrees 4, 16, 64, and
256.

1) Decryption Hitting
From the data shown below, the decryption hitting request

is slightly different from encryption hitting request. In contrast
to encryption, system is still able to compute decryption with
higher polynomial degrees. There is no significant difference
between 64 polynomial degree and 16 polynomial degree, but
the performance is less stable when using 256 polynomials
degree.

Fig. 21. Decryption Hitting Performance

2) Time Execution in Gateway
From the hitting performance above, we also see the

processing time of the internal gateway for each request. From
the graph in Figure 22, it can be seen that the performance of
decryption process with polynomial degree 4, 16, and 64 are
fast enough, where the gateway still able to do computations.
But when the polynomial degree rises to 256, the gateway still
able to do computation but with a long time.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

Fig. 22. Time Execution in Gateway

3) Scoring Performance
Then we also see the performance of the gateway's ability

to perform this decryption to see which polynomial degree can
be used to hit the requests. From the graph in Fig.23, it can be
seen that for every 1000 requests, any polynomial degree can
handle the request in 25ms. But when the hit increases to
12.5ms per 1000 requests, the polynomial degree that can still
perform a decryption process is polynomial degree 4, 16 and
64. When it reaches to 6.25ms per 1000 requests, the
polynomial degree that can still perform a decryption process is
polynomial degree 4 and 16.

Fig. 23. Scoring Decryption

V. CONCLUSSIONS

Data integrity is important these days because data leakage

from a device or system will cause a great losses regardless of

what system we are talking about. One of the ways to improve

the integrity of the data is by using encryption algorithms.

We implement this encryption algorithm using a fully

homomorphic encryption with a Brakerski / Fan-Vercauteren

scheme (FHE-BFV) to maintain data integrity on an IoT

device. This IoT device sends its data using the MQTT

protocol and will be encrypted at the gateway of the system

that we build.

Kita juga mengimplementasikan alat IoT untuk melakukan

pembacaan terhadap hearth rate yang kemudian datanya di

transmisikan menggunakan wifi menggunakan sebuah

protocol MQTT. Performa yang didapatkan juga kita lakukan

virtualisasi untuk melihat kinerja dari gateway yang kita

desain untuk melakukan semua algoritma kriptografi. Dari

semua performance yang kita test jika kita menggunakan

polynomial degree yang kecil yaitu 4 gateway masih dapat

memperlihatkan performance yang tinggi tetapi pada saat kita

memilih polynomial degree 64 hitting hanya mendapatkan

performa pengiriman data tiap 12.5ms saja tiap 1000 datanya.

Untuk nilai polynomial degree yang lebih tinggi performa

hitting gateway pun harus semakin pelan.

We also implemented an IoT device that read heart rate

that can be sent using WiFi with MQTT protocol. We also

using virtualization to see the performance of the gateway that

we designed to perform all encryption algorithms. Of all the

performances we tested, the results shows that if we use a

small polynomial degree, such as 4, the gateway still shows a

high performance. But, if we choose a higher polynomial

degrees, such as 64, the gateway shows a decreasing of

performance as we get time execution equal to 12.5ms for

every 1000 data. For higher polynomial degree, the gateway

performance is shown to be decreasing.

REFERENCES

[1] International Telecomunication Union, "Measuring Digital Development
Facts and Figures," ITUPublications, pp. 1-15, 2019.

[2] Technopedia, "Technopedia," Technopedia, 27 November 2020.

[Online]. Available:
https://www.techopedia.com/definition/28247/internet-of-things-iot.

[Accessed 29 April 2021].

[3] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J.
Leach and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1,"

RFC2616, 2009.

[4] I. Syafalni, "Cloud Security Implementation using Homomorphic
Encryption," IEEE International Conference on Communication,

Networks and Satellite (Comnetsat), pp. 341-345, 2020.

[5] OASIS, "MQTT Version 5.0," OASIS Standard, pp. 1-3, 07 March 2019.

[6] IDG Network World, Network World, IDG Network Worl Inc, 1997.

[7] C. Gentry, "A fully homomorphic encryption scheme," Stanford

University, 2009.

[8] J. Fan and F. Vercauteren, "Somewhat Practical Fully Homomorphic

Encryption," in IACR Cryptology ePrint Archive, 2012.

[9] M. Brener, W. Dai, S. Halevi, K. Han, A. Jalali, M. Kim, K. Laine, A.
Malozemoff, P. Paillier, Y. Polyakov, K. Rohloff, E. Savas and B. Sunar,

"A Standard API for RLWE-Based Encryption," in Academic

Consortium to Advance Secure Computation, California, 2017.

[10] C. Adams, "The Simple Public-Key GSS-API Mechanism (SPKM),"

Bell-Northern Research, 1996.

[11] I. A. D. V. S. Bagad, "Computer Networks (5th revised edition, 2010
ed.)," Technical Publications Pune, 2008.

[12] G. R. Sanchez, "Implementation of a chat applicationfor developers," A

Final Degree Project presented for the degree ofComputer Engineering,
2017.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2021

Gede Satya Adi Dharma

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2020/2021

